cuda常见问题解决办法

  1. 1. libnvinfer.so.5: cannot open shared object file: No such file or directory

1. libnvinfer.so.5: cannot open shared object file: No such file or directory

# Add NVIDIA package repositories
# Add HTTPS support for apt-key
sudo apt-get install gnupg-curl
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_10.0.130-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1604_10.0.130-1_amd64.deb
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
sudo apt-get update
wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
sudo apt-get update

# Install NVIDIA driver
# Issue with driver install requires creating /usr/lib/nvidia
sudo mkdir /usr/lib/nvidia
sudo apt-get install --no-install-recommends nvidia-418
# Reboot. Check that GPUs are visible using the command: nvidia-smi

# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
    cuda-10-0 \
    libcudnn7=7.6.2.24-1+cuda10.0  \
    libcudnn7-dev=7.6.2.24-1+cuda10.0


# Install TensorRT. Requires that libcudnn7 is installed above.
sudo apt-get install -y --no-install-recommends libnvinfer5=5.1.5-1+cuda10.0 \
    libnvinfer-dev=5.1.5-1+cuda10.0

GPU support

Note: GPU support is available for Ubuntu and Windows with CUDA®-enabled cards.

TensorFlow GPU support requires an assortment of drivers and libraries. To simplify installation and avoid library conflicts, we recommend using a TensorFlow Docker image with GPU support (Linux only). This setup only requires the NVIDIA® GPU drivers.

These install instructions are for the latest release of TensorFlow. See the tested build configurations for CUDA and cuDNN versions to use with older TensorFlow releases.

Pip package

See the pip install guide for available packages, systems requirements, and instructions. To pip install a TensorFlow package with GPU support, choose a stable or development package:

pip install tensorflow-gpu  # stable

pip install tf-nightly      # preview

Older versions of TensorFlow

For the 1.15 release, CPU and GPU support are included in a single package:

pip install --pre "tensorflow==1.15.*"

For releases 1.14 and older, CPU and GPU packages are separate:

pip install tensorflow==1.14      
# CPU
pip install tensorflow-gpu==1.14  
# GPU

Hardware requirements

The following GPU-enabled devices are supported:

Software requirements

The following NVIDIA® software must be installed on your system:

Linux setup

The apt instructions below are the easiest way to install the required NVIDIA software on Ubuntu. However, if building TensorFlow from source, manually install the software requirements listed above, and consider using a -devel TensorFlow Docker image as a base.

Install CUPTI which ships with the CUDA® Toolkit. Append its installation directory to the $LD_LIBRARY_PATH environmental variable:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64

For a GPU with CUDA Compute Capability 3.0, or different versions of the NVIDIA libraries, see the Linux build from source guide.

Install CUDA with apt

This section shows how to install CUDA 10 (TensorFlow >= 1.13.0) and CUDA 9 for Ubuntu 16.04 and 18.04. These instructions may work for other Debian-based distros.

Caution: Secure Boot complicates installation of the NVIDIA driver and is beyond the scope of these instructions.

Ubuntu 18.04 (CUDA 10)

# Add NVIDIA package repositorieswget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.debsudo dpkg -i cuda-repo-ubuntu1804_10.0.130-1_amd64.debsudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pubsudo apt-get updatewget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.debsudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.debsudo apt-get update# Install NVIDIA driversudo apt-get install --no-install-recommends nvidia-driver-418# Reboot. Check that GPUs are visible using the command: nvidia-smi# Install development and runtime libraries (~4GB)sudo apt-get install --no-install-recommends \    cuda-10-0 \    libcudnn7=7.6.2.24-1+cuda10.0  \    libcudnn7-dev=7.6.2.24-1+cuda10.0# Install TensorRT. Requires that libcudnn7 is installed above.sudo apt-get install -y --no-install-recommends libnvinfer5=5.1.5-1+cuda10.0 \    libnvinfer-dev=5.1.5-1+cuda10.0

Ubuntu 16.04 (CUDA 10)

# Add NVIDIA package repositories# Add HTTPS support for apt-keysudo apt-get install gnupg-curlwget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_10.0.130-1_amd64.debsudo dpkg -i cuda-repo-ubuntu1604_10.0.130-1_amd64.debsudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pubsudo apt-get updatewget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.debsudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.debsudo apt-get update# Install NVIDIA driver# Issue with driver install requires creating /usr/lib/nvidiasudo mkdir /usr/lib/nvidiasudo apt-get install --no-install-recommends nvidia-418# Reboot. Check that GPUs are visible using the command: nvidia-smi# Install development and runtime libraries (~4GB)sudo apt-get install --no-install-recommends \    cuda-10-0 \    libcudnn7=7.6.2.24-1+cuda10.0  \    libcudnn7-dev=7.6.2.24-1+cuda10.0# Install TensorRT. Requires that libcudnn7 is installed above.sudo apt-get install -y --no-install-recommends libnvinfer5=5.1.5-1+cuda10.0 \    libnvinfer-dev=5.1.5-1+cuda10.0

Ubuntu 16.04 (CUDA 9.0 for TensorFlow < 1.13.0)

# Add NVIDIA package repository
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_9.1.85-1_amd64.deb

sudo apt install ./cuda-repo-ubuntu1604_9.1.85-1_amd64.deb

wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb

sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
sudo apt update

# Install the NVIDIA driver
# Issue with driver install requires creating /usr/lib/nvidiasudo 

mkdir /usr/lib/nvidia
sudo apt-get install --no-install-recommends nvidia-410

# Reboot. Check that GPUs are visible using the command: nvidia-smi
# Install CUDA and tools. Include optional NCCL 2.x

sudo apt install cuda9.0 cuda-cublas-9-0 cuda-cufft-9-0 cuda-curand-9-0 \    
    cuda-cusolver-9-0 cuda-cusparse-9-0 libcudnn7=7.2.1.38-1+cuda9.0 \    
    libnccl2=2.2.13-1+cuda9.0 cuda-command-line-tools-9-0

# Optional: Install the TensorRT runtime (must be after CUDA install)

sudo apt updatesudo apt install libnvinfer4=4.1.2-1+cuda9.0

Windows setup

See the hardware requirements and software requirements listed above. Read the CUDA® install guide for Windows.

Make sure the installed NVIDIA software packages match the versions listed above. In particular, TensorFlow will not load without the cuDNN64_7.dll file. To use a different version, see the Windows build from source guide.

Add the CUDA, CUPTI, and cuDNN installation directories to the %PATH% environmental variable. For example, if the CUDA Toolkit is installed to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0 and cuDNN to C:\tools\cuda, update your %PATH% to match:

SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin;%PATH% SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\CUPTI\libx64;%PATH% SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include;%PATH% SET PATH=C:\tools\cuda\bin;%PATH%

转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件.

文章标题:cuda常见问题解决办法

文章字数:1.4k

本文作者:AlexBruce Lu

发布时间:2019-12-18, 11:25:36

最后更新:2019-12-18, 17:05:18

原始链接:https://alexbrucelu.github.io/2019/12/18/cuda%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98%E8%A7%A3%E5%86%B3%E5%8A%9E%E6%B3%95/

版权声明: "署名-非商用-相同方式共享 4.0" 转载请保留原文链接及作者。

目录
×

喜欢就点赞,疼爱就打赏